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Abstract

Background: Streptozotocin (STZ) is an agent with selective toxicity
targeting pancreatic -cells and is commonly used to establish models
of pancreatic damage. Royal jelly (RJ) is a natural product rich in
biologically active compounds and has been shown in various studies
to exert antioxidative and cytoprotective effects.

Aims: This study aimed to evaluate the potential protective effects of
RJ against STZ-induced pancreatic damage and to investigate these
effects in terms of oxidative stress (OS) and telomere biology.

Methods: Twenty-four female Wistar albino rats were randomly
divided into four groups: control, RJ (350 mg/kg), STZ, and STZ +
RJ (350 mg/kg). Telomere length in pancreatic tissue and serum levels
of 8-hydroxy-2’-deoxyguanosine (8-OHdG), paraoxonase-1 (PON1),
and telomerase were analyzed using commercial enzyme-linked
immunosorbent assay Kits.

Results: STZ administration significantly increased oxidative DNA
damage (8-OHdG) and decreased PONI1 levels, indicating elevated
OS. RJ treatment effectively reversed these changes, bringing 8-OHdG
and PONI1 levels closer to those of the control group. Moreover, RJ
administration significantly increased the reduced pancreatic telomere
length and serum telomerase levels in the STZ group.

Conclusion: These findings suggest that RJ may mitigate STZ-
induced oxidative stress and telomere shortening. Further studies are
needed to elucidate the therapeutic mechanisms of RJ in OS-related
pancreatic disorders.

Ozet

Dayanak: Streptozotosin (STZ), ozellikle pankreasin f-hiicrelerini
hedef alan secici toksisiteye sahip bir ajandir ve pankreatik hasar
modellerinin olusturulmasinda siklikla kullanilmaktadir. Art siiti
(RJ) ise biyolojik olarak aktif bilesiklerce zengin dogal bir iiriin
olup oksidatif stres (OS) karsitt ve hiicre koruyucu etkileri ¢esitli
caligmalarda gosterilmistir.

Amaclar: Bu calisma, RJ’nin STZ ile indiiklenen pankreas hasarina
kars1 potansiyel koruyucu etkilerini degerlendirmeyi ve bu etkileri
oksidatif stres ile telomer biyolojisi acisindan incelemeyi amaglamistir.

Yontemler: Yirmi dort disi Wistar albino sican rastgele dort gruba
ayrilmistir: Kontrol, RJ (350 mg/kg), STZ ve STZ + RJ (350 mg/kg).
Pankreas doku orneklerinden telomer uzunlugu; kan serumundan da
8-hidroksi-2’-deoksiguanozin (8- OHdG), paraoksonaz-1 (PON1) ve
telomeraz diizeyleri enzim baglantili immiinosorbent analizi kitleri
kullanilarak analiz edilmistir.

Bulgular: STZ uygulamasi, oksidatif DNA hasarin1 (8-OHdG)
anlamli derecede artirmig ve PON1 diizeylerini azaltarak artmig OS’yi
ortaya koymustur. RJ tedavisi bu degisiklikleri etkili bir sekilde tersine
cevirerek 8-OHdG ve PONI diizeylerini kontrol grubu degerlerine
yaklastirmigtir.  Ayrica, RJ uygulamasinin STZ grubunda azalan
pankreas telomer uzunlugunu ve serum telomeraz diizeyini anlamh
bicimde artirdig1 belirlenmistir.

Sonug: Bu bulgular, RI’nin STZ kaynakli oksidatif stresi ve telomer
kisalmasini azaltabilecegini gostermektedir. OS ile iligkili pankreatik
bozukluklarda RJ’nin terapotik mekanizmasini en iyi sekilde ortaya
koymak igin ileri caligmalara ihtiya¢ vardir.
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Introduction

Royal jelly (RJ) is a nutrient-rich compound secreted by the
hypopharyngeal glands of worker honey bees. It is a complex
mixture of lipids, glucose, proteins, vitamins, and minerals.
The longevity and fertility of queen bees have been attributed to
their exclusive feeding on RJ (Ozkok et al., 2021). RJ is widely
utilized commercially in the medical and cosmetic fields. Animal
studies have demonstrated that RJ possesses multiple bioactivities,
including antioxidant (Ghanbari et al., 2016), anti-inflammatory
(Fujiwara et al., 1990), antihypertensive (Tokunaga et al., 2004),
and immunomodulatory (Vucevic et al., 2007) effects. One of
its most remarkable properties is its ability to stimulate cell
proliferation and influence antidiabetes therapeutic processes
(Ghanbari et al., 2015).

Streptozotocin (STZ), is a monofunctional nitrosourea derivative
isolated from Streptomyces achromogenes, which exhibits broad-
spectrum antibiotic activity and antineoplastic properties. STZ
is widely employed in experimental models to induce selective
pancreatic f-cell damage due to its potent DNA-alkylating properties,
resulting in random DNA synthesis, strand breaks, adducts, alkali-
labile sites, micronuclei formation, sister chromatid exchanges,
chromosomal aberrations, and cell death. These impacts render
STZ a powerful mutagen in bacterial and mammalian cells (Tural
Cifci & Tuzcu, 2025; Paviolo et al., 2015). The selective uptake
of STZ by pancreatic B-cells is mediated via the GLUT2 glucose
transporter, leading to DNA alkylation and the subsequent activation
of poly(ADP-ribose) polymerase, NAD* depletion, reduced ATP
levels, and the inhibition of insulin production. Moreover, STZ
generates reactive oxygen species, contributing further to DNA
damage and cytotoxicity (Tural Cifci & Tuzcu, 2025; Saha et al.,
2025). STZ is administered to obtain experimental models, as
either a single high dose or multiple low doses, to reliably induce
diabetes, providing a reproducible platform for assessing pancreatic
tissue responses to pharmacological agents independent of systemic
glucose levels (Lenzen, 2008; Like & Rossini, 1976).

Telomeres are specialized nucleoprotein complexes located at the
ends of linear chromosomes, playing a crucial role in preserving
genomic stability and cell replicative capacity (Blackburn, 1991).
Telomere shortening, which occurs naturally with each cell
division, may be further accelerated by external factors such as
oxidative stress (OS) and DNA damage, leading to cell senescence
or apoptosis (Epel et al., 2004). In this context, telomere length is
not only a biomarker of cell aging but also a critical determinant
of cell proliferative potential (Blackburn, 2001). Since pancreatic
p-cell regeneration is limited and sensitive to OS, monitoring
telomere integrity provides valuable insights into tissue
homeostasis under pathological conditions (Zhang et al., 2019).
Furthermore, OS-induced telomere attrition has been implicated
in the dysfunction of several tissues, including pancreatic islets,
making telomere dynamics a relevant parameter for metabolic and
degenerative diseases (Epel et al., 2004; Zhang et al., 2019).

This study primarily aimed to evaluate the potential of RJ, a natural
bioactive compound, to mitigate STZ-induced p-cell damage.

Specifically, considering the antioxidant, antiapoptotic, and
cytoprotective properties of RJ, this study investigated its impacts
on STZ-induced DNA damage, OS, and telomere dysfunction.
Overall, it elucidates the alleviative potential of RJ against STZ-
induced pancreatic injury and the contribution of natural bioactive
agents in maintaining pancreatic homeostasis under metabolic and
genotoxic stress.

Materials and Methods

This study was carried out with the approval of Canakkale Onsekiz
Mart University Animal Experiments Local Ethics Committee
(approval number: 2021/01-01, dated: 12.02.2021).

Experimental Plan

The RJ used is commercially available and is produced by the BeeO
R&D Laboratory, Istanbul Technical University, Istanbul, Tiirkiye.
The RJ dose administered was determined based on the effective
doses reported for similar animal models (Cakir, 2023). For the
experiments, 24 Wistar albino female rats weighing 200-250 g were
divided into four groups, with six rats in each group. They were
named as control, RJ (350 mg/kg RJ), STZ, and STZ + RJ (350
mg/kg RJ) groups (Figure 1). The environmental conditions were
maintained at 21 °C + 2 °C and 50% + 5% humidity, under a 12/12
h light/dark cycle. The STZ group animals were intraperitoneally
(i.p.) administered with 50 mg/kg STZ in citrate buffer. RJ was
administered by the gavage method. At the end of the 4-week
experiment, the rats were kept on a fast for 10 h and anesthetized
with 70 mg/kg ketamine and 7 mg/kg xylazine (i.p.). Blood was
collected from their hearts after puncture and transferred to tubes
without an anticoagulant for serum. After the tubes were spun in
an NF 1200 centrifuge (Niive, TX, USA) at 1,400 g and 4 °C for 10
min, the serum was separated and stored in labeled tubes at -80 °C.

Serum Analysis

In the study, commercially available enzyme-linked immunosorbent
assay (ELISA) kits were used to measure telomerase level
(E-EL-R0947;  Elabscience, TX, USA), 8'-hydroxy-2’'-
deoxyguanosine (8-OHdG, MBS701076; MyBiosource, CA,
USA) levels, and PON1 (MBS453155; MyBiosource) contents.
An ELx800 ELISA device (BioTek Instruments, Inc., VT, USA)
and an ELx50 washer (BioTek) were used.

Tissue Homogenization

A clinic/cell SV mini tissue extraction kit (108-101; GeneAll
Biotechnology Co., Ltd., Seoul, Korea), 0.2 mm stainless steel
beads, and a Digital Disruptor Cell Disruptor (#3591456; Bio-
Rad Laboratories, CA, USA) were employed to homogenize the
pancreatic tissues.

Telomere Lengths

In this study, the average telomere length of the pancreatic tissue
cells was determined using the Telomere Length Quantification
gPCR Test Kit (R8918; ScienCell Research Laboratories, CA,
USA) and the Absolute Rat Telomere Length Kit (R8918;
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Figure 1. Experimental plan.

ScienCell Research Laboratories). A single-copy reference (SCR)
primer, which amplifies a 100-bp region of chromosome 17, was
employed for data normalization. Genomic DNA with a known
telomere length served as a reference for calculating the telomere
lengths of the study samples.

ACq (TEL) = Cq (TEL, target sample)- Cq (TEL, reference
sample)
ACq (SCR) = Cq (SCR, target sample)- Cq (SCR, reference
sample)

AACq = ACq (TEL)- ACq (SCR) =
sample X 2—24¢

Telomere length of reference

The average telomere length in the target genomic DNA was 5.05
+ 0.18 Mb. Rat diploid cells have 84 telomeres; the average length
of each telomere is = 5.05 + 0.18 Mb/84 = 60.1 + 2.1 kb per
diploid cell or chromosome end (Cakir, 2023; O’Callaghan &
Fenech, 2011).

Statistical Analysis

All data are expressed as mean =+ standard deviation (SD).
Normality and homogeneity of variances were assessed using
the Shapiro—Wilk and Levene tests, respectively. Variables with
homogenous variances were analyzed using one-way analysis
of variance (ANOVA), followed by Tukey’s post-hoc test, while
variables with unequal variances were analyzed using Welch
ANOVA, followed by Games—Howell post-hoc comparisons.
Statistical significance was set at p < 0.05, and post-hoc
differences are indicated in the tables as *p < 0.05, **p < 0.01, and
##%p < 0.001. All analyses were performed using GraphPad
Prism 9 (GraphPad Software, CA, USA).

Results

The serum 8-OHdG levels varied markedly among the groups
(Table 1). They declined and elevated significantly in the RJ and

Telomere Length

Telomere repeats

TTAGGGTTAGGGTI
AATCCCAATCCC 5

STZ groups, respectively, compared to the control (p < 0.001). Co-
treatment with RJ and STZ significantly reduced §-OHdG levels
compared to STZ alone (p < 0.001), although the contents of both
groups remained slightly higher than that of the control group (p
< 0.05).

Table 1. Serum §-OHdG levels (ng/mL).

Group Mean + SD Post-hoc
Control 1.445 + 0.011 *

RJ 1.253 +0.034 ok

STZ 1.718 = 0.021 ok
STZ + RJ 1.465 + 0.046 *

8-OHdG: Group means + SD. Normality was confirmed (p > 0.05), but
homogeneity of variances was not confirmed according to Levene’s test.
Therefore, group differences were analyzed using Welch ANOVA, followed
by Games—Howell post-hoc test for pairwise comparisons, and significance
levels are indicated in the table as *p < 0.05, **p < 0.01, and

**%p < 0.001.

PONT activity differed remarkably between the groups (Table
2). It significantly increased and decreased in the RJ and STZ
groups, respectively, compared to the control group (p < 0.001).
STZ and RJ cotreatment increased PON1 activity compared to
STZ alone, restoring it closer to the control group levels (p <
0.05).

The pancreatic tissue telomere lengths varied significantly among
the groups (Table 3). The telomere length decreased markedly in
the STZ group but increased significantly in the STZ + RJ group
compared to the STZ group (p < 0.01), although it was not fully
restored to the same length as the control group.

The serum telomerase levels also differed among the groups
(Table 4). They declined markedly in the STZ group, but did not
differ significantly in the RJ and STZ + RJ groups, compared
to the control group (p > 0.05). these findings indicate that RJ
administration partially mitigated such STZ-induced decrease.
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Table 2. Serum PON1 activity (U/mL).

Group Mean + SD Post-hoc
Control 2187 +4.4 *

RJ 2297+ 7.4 K

STZ 187.0 + 2.6 ek

STZ + RJ 212.0+5.0 &

PONI1: Values are presented as mean + SD. Normality and homogeneity
of variances were confirmed, and group differences were analyzed using
one-way ANOVA, followed by Tukey’s post-hoc test. Significance levels
are indicated as *p < 0.05, **p < 0.01, and ***p < 0.001.

Table 3. Pancreatic telomerase length (kb).

Group Mean + SD Post-hoc
RJ 96.64 + 3.10 *
Control 100.94 + 1.84 *

STZ 7.31 +£0.29 ok
STZ + RJ 44.82 +0.32 ok

Telomere length: Values are presented as mean + SD. Normality and
homogeneity of variances were confirmed, and group differences were
analyzed using one-way ANOVA, followed by Tukey’s post-hoc test.
Significance levels are indicated as *p < 0.05, **p<0.01, and ***p <
0.001.

Table 4. Serum telomerase levels (ng/mL).

Group Mean + SD Post-hoc
Control 0.398 + 0.036 *

RJ 0.348 + 0.037 &

STZ 0.281 + 0.064 sk

STZ + RJ 0.348 + 0.046 *

Telomerase levels: Values are presented as mean + SD. Normality and
homogeneity of variances were confirmed, and group differences were
analyzed using one-way ANOVA, followed by Tukey’s post-hoc test.
Significance levels are indicated as *p < 0.05, **p < 0.01.

Discussion

STZ is widely employed to construct experimental diabetes
models due to its selective cytotoxicity toward pancreatic p-cells
within the islets of Langerhans. Structurally similar to glucose,
STZ enters B-cells via the GLUT2 transporter and induces cell
damage through mechanisms including DNA alkylation, nitric
oxide production, and free radical generation. This process not
only suppresses insulin biosynthesis but also promotes profound
OS and inflammation in pancreatic tissues (Fu et al., 2010;
Lenzen, 2008). In the present study, a single intraperitoneal
dose of 50 mg/kg STZ was administered to initiate tissue-level
pancreatic injury. This dosage has been identified as optimal,
since lower doses (30-40 mg/kg) failed to elicit a consistent
diabetic response, and higher doses (>70 mg/kg) were associated
with severe systemic toxicity and increased mortality (Ar’Rajab
& Ahrén, 1993).

Beyond its use in diabetes modeling, STZ induces persistent
genomic instability. Studies in rat-derived ADIPO-P2 cells
demonstrated that STZ exposure triggers long-term telomeric
dysfunction, characterized by a loss in telomere FISH signals
and duplications, independent of telomerase level or telomere
length (Paviolo et al., 2015). Similarly, in vivo studies reveal
that STZ damages the DNA of the proximal tubular epithelial
cells and activates p53-based signaling pathways, leading to
site-specific cytotoxicity, which, in certain contexts, could
be mitigated pharmacologically (Nakai et al., 2023). In
neuronal models, differentiated SH-SY5Y cells displayed
altered sensitivity to STZ-induced cytotoxicity and insulin
resistance, highlighting the role of cell maturity in the STZ
response (Bagaméry et al., 2021). Additionally, STZ induces
retinal progenitor cell damage in neonatal rats independent of
hyperglycemia, suggesting direct cytotoxic effects in developing
tissues (Lin et al., 2024).

The health-benefiting influence of RJ stems from its rich
composition of bioactives. RJ contains flavonoids and phenolics
known for their potent antioxidant activity, enabling it to counteract
OS implicated in the pathogenesis of various diseases (Kocot et
al., 2018). Furthermore, major RJ proteins (MRJPs) and peptides
derived from RJ demonstrate metal-chelating as well as antioxidant
capabilities involving mechanisms such as hydrogen peroxide,
superoxide, and hydroxyl radical scavenging. The proteolysis of
RJ proteins produces peptides that exhibit a robust antioxidant
potential (Guo et al., 2021).

Given the increasing interest in natural bioactive compounds,
this study aimed to evaluate the potential protective effects of RJ
against STZ-induced pancreatic injury, with particular attention
to telomere length as a molecular indicator of cell viability. In
addition, oxidative state alterations were assessed using specific
biomarkers, 8-OHdG for DNA oxidative damage and PON1 for
enzymatic antioxidant status, to elucidate the redox-modulatory
role of RJ within the pancreatic microenvironment (Aviram &
Rosenblat, 2004; Kasai, 1997; Mackness et al., 2004; Valavanidis
et al., 2009).

In addition to telomere length, serum telomerase level was also
evaluated to gain insights into the status of telomere maintenance
mechanisms following STZ-induced pancreatic damage and to
assess the modulatory effects of RJ on this process. Although
serum telomerase levels may not fully reflect tissue-level enzyme
activity, they can provide complementary information regarding
systemic telomere dynamics (Kim & Wu, 1997).

The toxic effects of STZ are not limited to the selective damage
of pancreatic p-cells but also to an increased systemic OS burden
(Lenzen, 2008; Szkudelski, 2001). However, RJ administration
increased PON1 activity and significantly reduced 8-OHdG
concentrations. These results suggest that RJ exerts protective
effects not only by alleviating oxidative DNA damage but also by
reducing lipid peroxidation.

These results of previous studies support these findings. For
instance, Cakir (2023) demonstrated that RJ markedly enhanced
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PONTI activity and suppressed 8-OHdG concentrations during
liver toxicity induced in rats. Similarly, Cakir (2022) reported that
different doses of RJ exerted beneficial effects on OS, as indicated
by biomarker levels and telomerase level in rats exposed to
cadmium. Prior investigations have emphasized the effectiveness
of RJ in alleviating diabetes-associated biochemical disturbances
and OS from various perspectives. Moreover, RJ promotes
healing by stimulating cell division and tissue regeneration
(El-Seedi et al., 2024; Orsoli¢ & Jazvins¢ak Jembrek, 2024).
PONI1 exerts beneficial effects in various diseases, including
diabetes, by modulating the signaling pathways associated with
inflammation and OS (Marsillach et al., 2009). The decrease in
PONT activity following cisplatin administration was extensively
preserved in rats treated with RJ (Yildirim et al., 2012). Similarly,
in the present study, STZ administration suppressed the PON1
activity, which were restored to near-control values following RJ
treatment.

8-OHdG is a well-established biomarker used to detect base
modifications induced by mutagenic damage to DNA and RNA
(Alper et al., 2005; Wong et al., 2006). Experimental diabetes
models have also demonstrated elevated OS marker and 8-OHdG
levels, highlighting the oxidative nature of diabetic damage and
the role of 8-OHdG as a molecular indicator of this process (Alper
et al., 2005; Mis et al., 2018). In this study, plasma 8-OHdG
concentrations were consistently and remarkably enhanced in
STZ-treated rats compared to controls. The notable reduction in
8-OHdG levels following RJ administration is attributed to the
potent antioxidant properties of RJ.

The findings of the present study are consistent with those
reported in the literature, indicating that telomere integrity and
telomerase level are closely associated with tissue damage,
OS, and inflammation. Processes such as genome instability,
heterochromatin loss, and telomere attrition accelerate cell
senescence and aging, particularly under conditions of tissue
injury and inflammatory stress (Wu et al., 2024). Comprehensive
meta-analyses investigating the relationship between telomere
dynamics and OS have provided substantial evidence that,
although complex, OS accelerates in vivo telomere attrition,
especially in studies employing structural telomere measurements
such as TRF (Armstrong & Boonekamp, 2023). Similarly, Tilekli
et al. (2024) reported that OS and proinflammatory responses
directly affect telomere length, and that diets low in saturated fats
or high in unsaturated fats, along with regular physical activity,
help maintain telomere integrity.

Conversely, several studies have demonstrated that telomerase
can be activated to a limited but critical level during regenerative
processes. Notably, TERT expression-based interventions using
adeno-associated viral vectors improved tissue function, reduced
the levels of molecular aging markers, and remarkably extended
lifespan even in adult and aged models (Bernardes de Jesus et
al., 2012). These findings suggest that telomerase level may play
a decisive role in tissue regeneration and post-injury recovery
processes.

In this study, telomerase levels reached statistical significance
following RJ administration. Telomere attrition accelerates under
conditions of increased metabolic activity and inflammatory
burden, and this effect may vary between species, methods, and
tissues (Simoroz et al., 2025). Therefore, the marked reduction in
telomerase levels observed in the STZ group and the increase seen
in the RJ group reflect a pattern consistent with the literature.

The telomere length in the RJ group increased significantly, but
did not fully reach the control levels, which can be attributed to
persistent telomeric damage induced by STZ. As a potent DNA-
methylating agent, STZ causes persistent structural alterations at
the telomeric regions, which manifest as telomere dysfunction,
instability, and associated chromosomal aberrations at the
cytogenetic level (Paviolo et al., 2015). Under such persistent
damage, even if regenerative mechanisms are activated, complete
restoration of telomere integrity may not be achievable. Thus, the
substantial improvement in telomere structure induced by RJ, yet
not achieving control levels, can be considered a consequence of
STZ-induced long-lasting telomeric injury.

Although telomeres naturally shorten with each cell division,
certain factors, particularly tissue injury, can accelerate this
process (Cakir, 2023; Epel et al., 2004). Telomerase activity
can be readily monitored in continuously dividing cells such
as cancer cells; however, its detection in somatic tissues is
considerably more challenging (Blackburn, 1991). Telomerase
activity can be observed during tissue regeneration processes
(Cherif et al., 2003; Cakar, 2022, 2023; Shay & Bacchetti, 1997).
In a study monitoring the regenerative status of rat pancreatic
tissues, telomerase was found to be actively regulated (Oh et al.,
2002).

A study investigating the applicability of telomere length as a
biomarker of cell aging and tissue damage reported a remarkable
shortening of the telomere in type 2 diabetes (Tarry-Adkins
et al., 2021). Jiang et al. (2018) demonstrated that MRJPs
exert anti-aging effects in human fibroblast cell lines and also
enhance the number of cells with longer telomeres under in
vivo conditions. Additionally, MRJPs elevate DNA and protein
synthesis by modulating four age-related genes: MTOR, SODI,
CTNNBI, and TP53 (Jiang et al., 2018). A cell viability assay
highlighted the stimulatory effects of RJ on stem cell growth
(Ozkok et al., 2021). Similarly, Cakir (2023) reported that RJ
improved telomere length, antioxidant parameters, and serum
biochemical markers in rats with CCl,-induced liver injury. RJ
promotes cell survival, proliferation, and antioxidant responses
while protecting telomeres during cell crises (Jenkhetkan et al.,
2017). Furthermore, RJ protects human cells from genotoxicity,
potentially through its antiapoptotic, antioxidative, and
antiaging properties (Jenkhetkan et al., 2018). In this study, STZ
administration markedly reduced telomere length in pancreatic
cells, whereas RJ supplementation at the dose applied remarkably
improved telomere integrity.
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Conclusion

The findings of the present study indicate that RJ protects against
STZ-induced pancreatic damage primarily by attenuating OS
and supporting telomere integrity. STZ significantly increased
oxidative DNA damage (8-OHdAG levels) and reduced PONI
activity, confirming elevated OS levels. RJ effectively reversed these
changes, restoring 8-OHdG and PONT1 levels similar to those of the
control group. Additionally, RJ partially improved telomerase level
and telomere length, but not to levels occurring in the control group.
This partial reversal of STZ-induced telomere shortening can be
attributed to persistent DNA methylation and telomere dysfunction
caused by STZ, which have been shown to result in lasting telomere
instability. Further detailed investigations are warranted to better
elucidate the bioactive components and therapeutic potential of RJ.
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